

Optimizing Feature Set for Click-Through Rate Prediction

Fuyuan Lyu* McGill University Montreal, Canada fuyuan.lyu@mail.mcgill.ca

Liang Chen FiT, Tencent

Shenzhen, China leocchen@tencent.com

Xing Tang^{*} FiT, Tencent Shenzhen, China shawntang@tencent.com

Xiuqiang He[‡] FiT, Tencent Shenzhen, China xiuqianghe@tencent.com

Dugang Liu^{†‡} Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ) Shenzhen, China dugang.ldg@gmail.com

> Xue Liu McGill University Montreal, Canada xueliu@cs.mcgill.ca

Reported by liang li

WWW 2023 Code: https://github.com/fuyuanlyu/OptFS

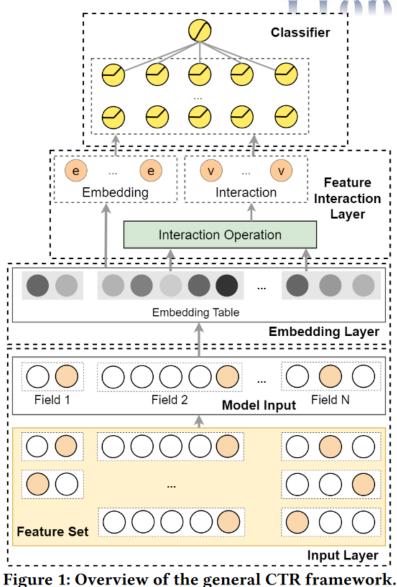
Motivation

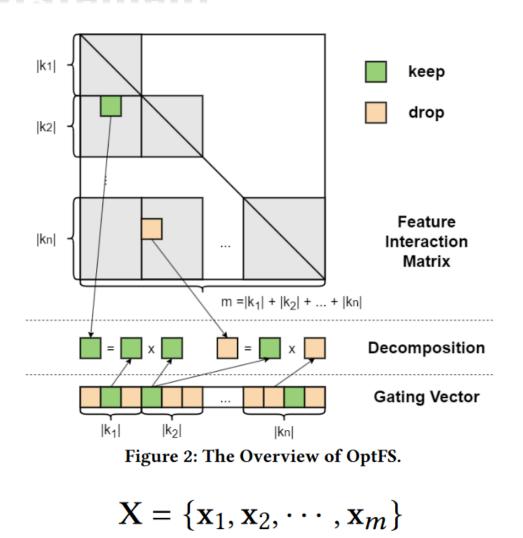
Details:

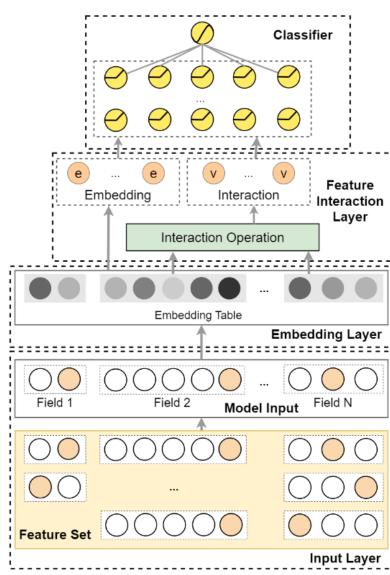
Most previous works focus on either feature field selection or only select feature interaction based on the fixed feature set to produce the feature.

- The former restricts search space to the feature field, which is too coarse to determine subtle features. They also do not filter useless feature interactions, leading to higher computation costs and degraded model performance.
- The latter identifies useful feature interaction from all available features, resulting in many redundant features in the feature set.

Problem Statement







Method

$$\begin{split} \min_{\mathbf{W}} \mathcal{L}(\mathcal{D} | \mathbf{W}), \ \mathcal{D} &= \{\mathbf{X}^{\mathbf{g}}, \mathbf{Y}\}, \\ s.t. \forall \mathbf{x} \in \mathbf{X}^{\mathbf{g}}, \mathcal{L}(\mathbf{X}^{\mathbf{g}}) > \mathcal{L}(\mathbf{X}^{\mathbf{g}} - \{\mathbf{x}\}), \\ \forall \mathbf{x} \notin \mathbf{X}^{\mathbf{g}}, \mathcal{L}(\mathbf{X}^{\mathbf{g}}) \geq \mathcal{L}(\mathbf{X}^{\mathbf{g}} + \{\mathbf{x}\}), \end{split}$$
(1)

$$\mathbf{z}_i = \{\mathbf{x}_{k_i}\}, \ 1 \le k_i \le m, \tag{2}$$

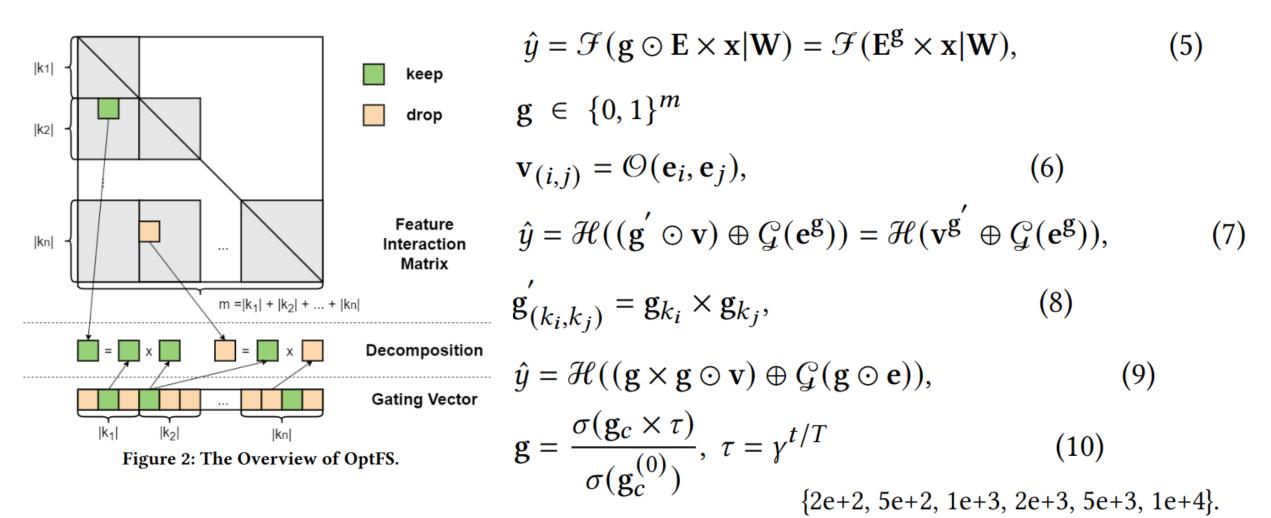
$$\mathbf{z} = [\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n] = [\mathbf{x}_{k_1}, \mathbf{x}_{k_2}, \cdots, \mathbf{x}_{k_n}], \quad (3)$$

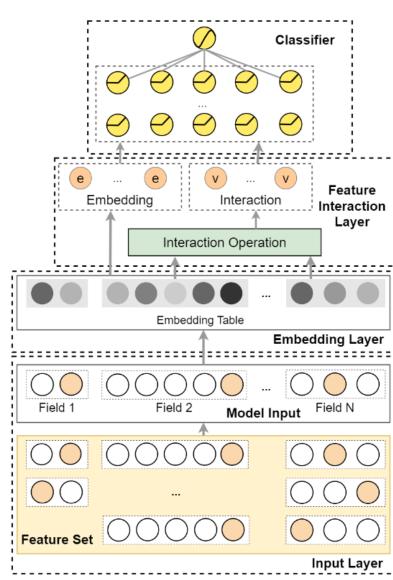
$$\mathbf{e}_{k_i}^{\mathbf{g}} = \mathbf{g}_{k_i} \odot \mathbf{e}_{k_i} = \mathbf{g}_{k_i} \odot (\mathbf{E} \times \mathbf{x}_{k_i}). \tag{4}$$

 $\mathbf{g}_{k_i} \in \{0,1\}$

Figure 1: Overview of the general CTR framework.

Method





Method

$$CE(y, \hat{y}) = y \log(\hat{y}) + (1 - y) \log(1 - \hat{y}), \qquad (11)$$
$$\mathcal{L}_{CE}(\mathcal{D}|\{E, W\}) = -\frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, y) \in \mathcal{D}} CE(y, \mathcal{F}(E \times \mathbf{x}|W)), \qquad (12)$$
$$\min_{\mathbf{g}_{c}, \mathbf{E}, \mathbf{W}} \mathcal{L}_{CE}(\mathcal{D}|\{\mathbf{g}_{c} \odot \mathbf{E}, \mathbf{W}\}) + \lambda \|\mathbf{g}\|_{1}, \qquad (13)$$
$$\mathbf{g} = \begin{cases} 0, \quad \mathbf{g}_{c} \leq 0\\ 1 & \text{order} \end{cases}$$

1,

$$\min_{\mathbf{E},\mathbf{W}} \mathcal{L}_{CE}(\mathcal{D}|\{\mathbf{g} \odot \mathbf{E}, \mathbf{W}\}).$$
(15)

Figure 1: Overview of the general CTR framework.

Experiments

Table 1: Summary of $G(\cdot), \mathfrak{O}(\cdot)$ and $\mathcal{H}(\cdot)$ in mainstream models

Model $G(\cdot)$		$\mathcal{O}(\cdot)$	$\mathcal{H}(\cdot)$
FM [26]	null	inner product	null
DeepFM [7]	MLP	inner product	average
DCN [31]	MLP	cross network	average
IPNN [24]	null	inner product	MLP
OPNN [24]	null	outer product	MLP
PIN [25]	null	MLP	MLP

Table 2: Performance Comparison Between OptFS and Feature Selection Methods.

	Method	FM		DeepFM		DCN			IPNN				
	Method	AUC↑	Logloss↓	Ratio↓	AUC†	Logloss↓	Ratio↓	AUC↑	Logloss↓	Ratio↓	AUC↑	Logloss↓	Ratio↓
	Backbone	0.8055	0.4457	1.0000	0.8089	0.4426	1.0000	0.8107	0.4410	1.0000	0.8110	0.4407	1.0000
0	LPFS	0.7888	0.4604	0.0157	0.7915	0.4579	0.2415	0.7802	0.4743	0.1177	0.7789	0.4705	0.3457
Criteo	AutoField	0.7932	0.4567	0.0008	0.8072	0.4439	0.3811	0.8113	0.4402	0.5900	0.8115	0.4401	0.9997
0	AdaFS	0.7897	0.4597	1.0000	0.8005	0.4501	1.0000	0.8053	0.4472	1.0000	0.8065	0.4448	1.0000
	OptFS	0.8060	0.4454	0.1387	0.8100*	0.4415 *	0.0422	0.8111	0.4405	0.0802	0.8116	0.4401	0.0719
	Backbone	0.7838	0.3788	1.0000	0.7901	0.3757	1.0000	0.7899	0.3755	1.0000	0.7913	0.3744	1.0000
su	LPFS	0.7408	0.4029	0.7735	0.7635	0.3942	0.9975	0.7675	0.3889	0.9967	0.7685	0.3883	0.9967
Avazu	AutoField	0.7680	0.3862	0.0061	0.7870	0.3773	1.0000	0.7836	0.3782	0.9992	0.7865	0.3770	0.9992
A	AdaFS	0.7596	0.3913	1.0000	0.7797	0.3837	1.0000	0.7693	0.3954	1.0000	0.7818	0.3833	1.0000
	OptFS	0.7839	0.3784	0.8096	0.7946*	0.3712^{*}	0.8686	0.7932*	0.3718^{*}	0.8665	0.7950 *	0.3709 *	0.9118
	Backbone	0.7783	0.1566	1.0000	0.7967	0.1531	1.0000	0.7974	0.1531	1.0000	0.7966	0.1532	1.0000
12	LPFS	0.7725	0.1578	1.0000	0.7964	0.1532	1.0000	0.7970	0.1530	1.0000	0.7967	0.1532	1.0000
KDD	AutoField	0.7411	0.1634	0.0040	0.7919	0.1542	0.9962	0.7943	0.1536	0.8249	0.7926	0.1541	0.8761
X	AdaFS	0.7418	0.1644	1.0000	0.7917	0.1543	1.0000	0.7939	0.1538	1.0000	0.7936	0.1539	1.0000
	OptFS	0.7811 *	0.1560*	0.5773	0.7988*	0.1527*	0.9046	0.7981 *	0.1530	0.8942	0.7975	0.1530	0.8729

Here * denotes statistically significant improvement (measured by a two-sided t-test with p-value < 0.05) over the best baseline. Bold font indicates the best-performed method.

(16)

Ratio = #Remaining Features/m.

Table 4: Transferability Analysis on Criteo and Avazu.

Table 3: Performance Comparison Between OptFS and Fea-ture Interaction Selection Method.

	Model	Method	Metrics				
	Model	Method	AUC↑	Logloss↓	Ratio↓		
		Backbone	0.8055	0.4457	1.0000		
•	FM	AutoFIS	0.8063	0.4449	1.0000		
Criteo		OptFS	0.8060	0.4454	0.1387		
C.	DeepFM	Backbone	0.8089	0.4426	1.0000		
		AutoFIS	0.8097	0.4418	1.0000		
		OptFS	0.8100	0.4415	0.0422		
		Backbone	0.7838	0.3788	1.0000		
_	FM	AutoFIS	0.7843	0.3785	1.0000		
Avazu		OptFS	0.7839	0.3784	0.8096		
		Backbone	0.7901	0.3757	1.0000		
	DeepFM	AutoFIS	0.7928	0.3721	1.0000		
		OptFS	0.7946*	0.3712^{*}	0.8686		

Here * denotes statistically significant improvement (measured by a two-sided t-test with p-value < 0.05) over the best baseline. **Bold** font indicates the best-performed method.

	Tangat	Courses	Metrics				
	Target	Source	AUC↑	Logloss↓	Ratio↓		
		DeepFM	0.8100	0.4415	0.0422		
	DeepFM	DCN	0.8097	0.4419	0.0802		
		IPNN	0.8097	0.4418	0.0719		
0		DCN	0.8111	0.4405	0.0802		
Criteo	DCN	DeepFM	0.8106	0.4410	0.0422		
C		IPNN	0.8107	0.4410	0.0719		
	IPNN	IPNN	0.8116	0.4401	0.0719		
		DCN	0.8113	0.4404	0.0802		
		DeepFM	0.8114	0.4403	0.0422		
	DeepFM	DeepFM	0.7946*	0.3712*	0.8686		
		DCN	0.7873	0.3754	0.8665		
Avazu		IPNN	0.7872	0.3755	0.9118		
	DCN	DCN	0.7932*	0.3718*	0.8665		
		DeepFM	0.7879	0.3784	0.8686		
		IPNN	0.7860	0.3762	0.9118		
	IPNN	IPNN	0.7950 *	0.3709*	0.9118		
		DCN	0.7907	0.3747	0.8665		
		DeepFM	0.7908	0.3748	0.8686		

Here * denotes statistically significant improvement (measured by a two-sided t-test with p-value < 0.05) over the best baseline. **Bold** font indicates the best-performed method.

Table 5: Ablation Study Regarding the Re-training Stage.

	Model	Metrics	Methods					
	Model	WICTICS	W.O.	r.i.	l.t.h.	c.i.		
Criteo	DeepFM	AUC↑	0.8012	0.8100	0.8100	0.8100		
		Logloss↓	0.4686	0.4416	0.4415	0.4415		
	DCN	AUC↑	0.8077	0.8109	0.8108	0.8111		
		Logloss↓	0.4522	0.4407	0.4408	0.4405		
	IPNN	AUC↑	0.7757	0.8113	0.8114	0.8116		
		Logloss↓	0.4998	0.4404	0.4403	0.4401		
Avazu	DeepFM	AUC↑	0.6972	0.7873	0.7883	0.7946*		
		Logloss↓	0.5017	0.3754	0.3790	0.3712^{*}		
	DCN	AUC↑	0.7122	0.7870	0.7858	0.7932 *		
		Logloss↓	0.4736	0.3801	0.3764	0.3718 *		
	IPNN	AUC↑	0.7560	0.7912	0.7910	0.7950 *		
		Logloss↓	0.4411	0.3745	0.3745	0.3709 *		

Here * denotes statistically significant improvement (measured by a two-sided t-test with p-value < 0.05) over the best baseline. **Bold** font indicates the best-performed method.

Here *w.o.* stands for without re-training, *r.i.* stands for re-training with random initialization, *l.t.h.* stands for initialization using lottery ticket hypothesis [4], *c.i.* stands for re-training with customized initialization, as previously discussed in Section 2.4.

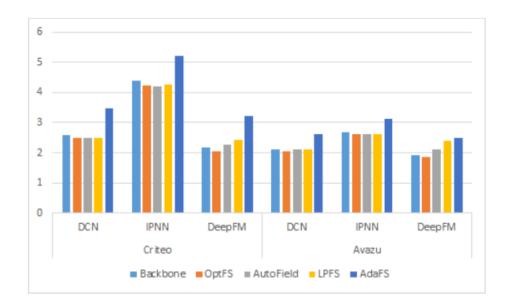


Figure 4: Inference Time of Different Models on Criteo and Avazu Dataset. The Y-axis represents the influence time, measured by ms

Experiments

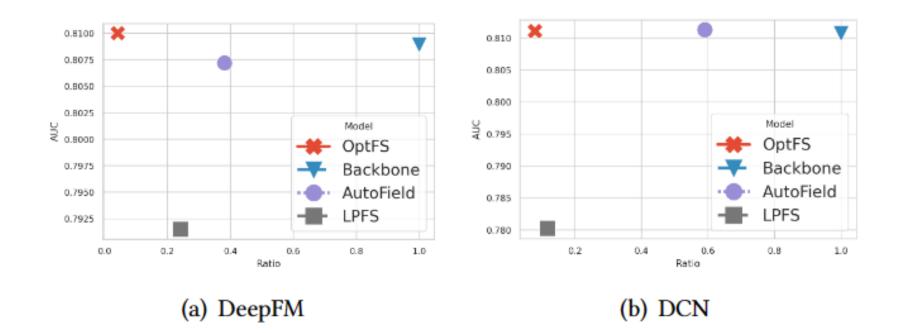


Figure 5: Visualization of efficiency-effectiveness trade-off on Criteo datasets. The closer to the top-left the better.

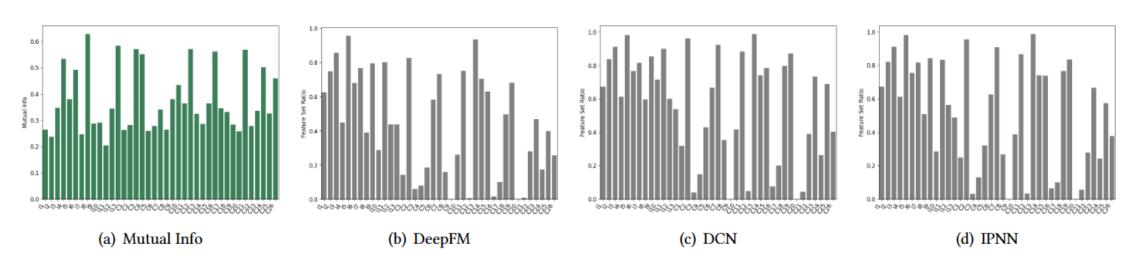


Figure 6: A Case Study of OptFS output on Criteo. In all subfigures, the X-axis indicates the field identifiers. Subfigure (a) plots the mutual information scores, while subfigures (b), (c) and (d) plot the feature set ratio of OptFS on DeepFM, DCN and IPNN.

Thanks